1,311 research outputs found

    Compositional nanodomain formation in hybrid formate perovskites

    Full text link
    We report the synthesis and structural characterisation of three mixed-metal formate perovskite families [C(NH2_2)3_3]M1x_{1-x}Cux_x(HCOO)3_3 (M = Mn, Zn, Mg). Using a combination of infrared spectroscopy, non-negative matrix factorization, and reverse Monte Carlo refinement, we show that the Mn- and Zn-containing compounds support compositional nanodomains resembling the polar nanoregions of conventional relaxor ferroelectrics. The M = Mg family exhibits a miscibility gap that we suggest reflects the limiting behaviour of nanodomain formation.Comment: 4 pages, 3 figure

    An Interactive Visual Tool to Enhance Understanding of Random Forest Predictions

    Get PDF
    Random forests are known to provide accurate predictions, but the predictions are not easy to understand. In order to provide support for understanding such predictions, an interactive visual tool has been developed. The tool can be used to manipulate selected features to explore “what-if” scenarios. It exploits the internal structure of decision trees in a trained forest model and presents this information as interactive plots and charts. In addition, the tool presents a simple decision rule as an explanation for the prediction. It also presents the recommendation for reassignments of feature values of the example that leads to change in the prediction to a preferred class. An evaluation of the tool was undertaken in a large truck manufacturing company, targeting the fault prediction of a selected component in trucks. A set of domain experts were invited to use the tool and provide feedback in post-task interviews. The result of this investigation suggests that the tool indeed may aid in understanding the predictions of a random forest, and also allows for gaining new insights

    Explaining Random Forest Predictions with Association Rules

    Get PDF
    Random forests frequently achieve state-of-the-art predictive performance. However, the logic behind their predictions cannot be easily understood, since they are the result of averaging often hundreds or thousands of, possibly conflicting, individual predictions. Instead of presenting all the individual predictions, an alternative is proposed, by which the predictions are explained using association rules generated from itemsets representing paths in the trees of the forest. An empirical investigation is presented, in which alternative ways of generating the association rules are compared with respect to explainability, as measured by the fraction of predictions for which there is no applicable rule and by the fraction of predictions for which there is at least one applicable rule that conflicts with the forest prediction. For the considered datasets, it can be seen that most predictions can be explained by the discovered association rules, which have a high level of agreement with the underlying forest. The results do not single out a clear winner of the considered alternatives in terms of unexplained and disagreement rates, but show that they are associated with substantial differences in computational cost

    Personal emergency response system (PERS) alarms may induce insecurity feelings

    Full text link

    Ultrathin Metallic Coatings Can Induce Quantum Levitation between Nanosurfaces

    Get PDF
    There is an attractive Casimir-Lifshitz force between two silica surfaces in a liquid (bromobenze or toluene). We demonstrate that adding an ultrathin (5-50{\AA}) metallic nanocoating to one of the surfaces results in repulsive Casimir-Lifshitz forces above a critical separation. The onset of such quantum levitation comes at decreasing separations as the film thickness decreases. Remarkably the effect of retardation can turn attraction into repulsion. From that we explain how an ultrathin metallic coating may prevent nanoelectromechanical systems from crashing together.Comment: 4 pages, 5 figure

    Simultaneous Bedside Assessment of Global Cerebral Blood Flow and Effective Cerebral Perfusion Pressure in Patients with Intracranial Hypertension

    Get PDF
    Background: We examined a bedside technique transcerebral double-indicator dilution (TCID) for global cerebral blood flow (CBF) as well as the concept of effective cerebral perfusion pressure (CPPeff) during different treatment options for intracranial hypertension, and compared global CBF and CPPeff with simultaneously obtained conventional parameters. Methods: Twenty-six patients developing intracranial hypertension in the course of traumatic brain injury or subarachnoid hemorrhage were prospectively analyzed using a combined assessment during elevated ventilation (n=15) or osmotherapy (hypertonic saline or mannitol). For calculation of global CBF, injections of ice-cold indocyanine green boluses were performed and temperature and dye concentration changes were monitored in the thoracic aorta and the jugular bulb. CBF was then calculated according to the mean transit time principle. Estimation of CCP, the arterial pressure at which cerebral blood flow becomes zero, was performed by synchronized registration of corresponding values of blood flow velocity in the middle cerebral artery and arterial pressure and extrapolation to zero-flow velocity. CPPeff was calculated as mean arterial pressure minus critical closing pressure (CPPeff=MAPc−CCP). Results: Elevated ventilation causes a decrease in both ICP (P<0.001) and CBF (P<0.001). While CPPconv increased (P<0.001), CPPeff decreased during this observation (P=0.002). Administration of osmotherapeutic agents resulted in a decrease of ICP (P<0.001) and a temporary increase of CBF (P=0.052). CPPconv and CPPeff showed no striking difference under osmotherapy. Conclusion: TCID allows repeated measurements of global CBF at the bedside. Elevated ventilation lowered and osmotherapy temporarily raised global CBF. In situations of increased vasotonus, CPPeff is a better indicator of blood flow changes than conventional CP
    corecore